Probability and Statistics I

STAT 3600 - Fall 2021

Le Chen
lzc0090@auburn.edu

Last updated on
July 4, 2021

Auburn University
 Auburn AL

Chapter 2. Discrete Distributions

Chapter 2. Discrete Distributions

§ 2.1 Random Variables of the Discrete Type
§ 2.2 Mathematical Expectation
§ 2.3 Special Mathematical Expectation
§ 2.4 The Binomial Distribution
§ 2.5 The Hypergeometric Distribution
§ 2.6 The Negative Binomial Distribution
§ 2.7 The Poisson Distribution

Definition 2.3-1 The mean (or expected value) of a discrete r.v. X, denoted by μ or $\mathbb{E}(X)$, is defined by

$$
\mu=\mathbb{E}(X)=\sum_{x \in S} x f(x)
$$

Example 2.3-1 Say an experiment has probability of success p, where $0<p<1$, and probability of failure $q=1-p$. This experiment is repeated independently until the first success occurs; say this happen on the X trial. Clearly the space of X is $S_{x}=\{1,2,3,4, \cdots\}$.

What is $\mathbb{P}(X=x)$, where $x \in S_{x}$?

We must observe $x-1$ failures and then a success to have this happen. Thus, due the independence, the probability is

$$
f(x)=\mathbb{P}(X=x)=q \cdot q \cdots q \cdot p=q^{x-1} p, \quad x \in S_{X} .
$$

Since p and q are positive, this is a pmf because

$$
\sum_{x \in S_{X}} q^{x-1} p=\sum_{x=0}^{\infty} q^{x-1} p=\frac{p}{1-q}=\frac{p}{p}=1
$$

This distribution is called geometric distribution.

The mean of this distribution is

$$
\mu=\sum_{x=1}^{\infty} x f(x)=(1) p+(2) q p+(3) q^{2} p+\cdots
$$

and

$$
q \mu=(q) p+(2) q^{2} p+(3) q^{3} p+\cdots
$$

If we subtract these second of these two equations from the first, we have

$$
\begin{aligned}
(1-q) \mu & =p+p q+p q^{2}+p q^{3}+\cdots \\
& =\sum_{x=0}^{\infty} p q^{x}=\frac{p}{1-q}=1 .
\end{aligned}
$$

That is,

$$
\mu=\frac{1}{1-q}=\frac{1}{p} .
$$

For illustration, if $p=1 / 10$, we would expect $\mu=10$ trials are needed on average to observe a success. This certainly agrees with out intuition.

Definition 2.3-2 The r th moment about the origin of a discrete r.v. X is defined by

$$
\mathbb{E}\left(X^{n}\right)=\sum_{x \in S} x^{n} f(x)
$$

Definition 2.3-3 The variance of a discrete r.v. X, denoted by σ^{2} or $\operatorname{Var}(X)$, is defined by

$$
\sigma^{2}=\operatorname{Var}(X)=\mathbb{E}\left\{[X-\mathbb{E}(X)]^{2}\right\}=\sum_{x \in S}(x-\mu)^{2} f(x)
$$

Definition 2.3-4 The standard deviation of a r.v. X, denoted by σ, is the positive square root of $\operatorname{Var}(X)$, i.e.,

$$
\sigma=\sqrt{\operatorname{Var}(X)}
$$

Example 2.3-2 Consider a discrete r.v. X whose p.m.f. is given by

$$
f(x)= \begin{cases}\frac{1}{3} & \text { if } x=-1,0,1 \\ 0 & \text { otherwise. }\end{cases}
$$

Find the mean, variance, and standard deviation of X.

Example 2.3-3 Let a r.v. X denote the outcome of throwing a fair die. Find the mean and variance of X.

Example 2.3-4 Find the mean and variance of a r.v. X, which has a uniform distribution on the first m positive integers.
Hint: Use the formula:

$$
\sum_{k=1}^{n} k=\frac{n(n+1)}{2} \quad \text { and } \quad \sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Definition 2.3-5 The nth moment about the point b is defined as

$$
\mathbb{E}\left[(X-b)^{n}\right]=\sum_{x \in S}(x-b)^{n} f(x)
$$

Remark 2.3-1 $\operatorname{Var}(X)$ is the second moment about the mean μ.

Definition 2.3-6 The r th factorial moment is defined as

$$
\mathbb{E}\left[(X)_{r}\right]=\mathbb{E}[X(X-1)(X-2) \cdots(X-r+1)]
$$

Remark 2.3-2

$$
\begin{aligned}
\sigma^{2}=\operatorname{Var}(X) & =\mathbb{E}[X(X-1)]+\mathbb{E}(X)-[\mathbb{E}(X)]^{2} \\
& =\mathbb{E}\left[(X)_{2}\right]+\mu-\mu^{2}
\end{aligned}
$$

Example 2.3-5 Find the variance of of the hypergeometric distribution considered in Example 2.3-3.

Hint: $\mathbb{E}(X)=n \frac{N_{1}}{N}$ and $\mathbb{E}[X(X-1)]=\frac{n(n-1)\left(N_{1}\right)\left(N_{1}-1\right)}{N(N-1)}$.

Definition 2.3-7 Let X be a random variable of the discrete type with $\mathrm{pmf} f(x)$ and space S. If there is a positive number h such that

$$
\mathbb{E}\left(e^{t x}\right)=\sum_{x \in S} e^{t x} f(x)
$$

exists and is finite for $-h<t<t$, then the function defined by

$$
M(t)=\mathbb{E}\left(e^{t X}\right)
$$

is called the moment-generating function of X (or of the distribution of X). This function is often abbreviated as mgf.

Properties of moment generating function

1. $M(0)=1$.
2. If the space of S is $\left\{b_{1}, b_{2}, b_{3}, \cdots\right\}$, then the moment generating function is given by the expansion

$$
M(t)=e^{t b_{1}} f\left(b_{1}\right)+e^{t b_{2}} f\left(b_{2}\right)+e^{t b_{3}} f\left(b_{3}\right)+\cdots
$$

Thus, the coefficient of $e^{t b_{i}}$ is the probability

$$
f\left(b_{i}\right)=\mathbb{P}\left(X=b_{i}\right)
$$

3. If the moment generating function exists, then

$$
\begin{gathered}
M^{\prime}(0)=\mathbb{E}(X)=\mu \\
M^{\prime \prime}(0)=\mathbb{E}\left(X^{2}\right)
\end{gathered}
$$

and, in general,

$$
M^{(r)}(0)=\mathbb{E}\left(X^{r}\right)
$$

Example 2.3-6 Suppose X has the geometric distribution of Example 2.3-1; that is, the pmf is

$$
f(x)=q^{x-1} p, \quad x=1,2,3, \cdots .
$$

Find mgf of X.

Example 2.3-7 Define the p.m.f. and give the values of μ, σ^{2}, and σ when the moment generating function of X is given by (a) $M(t)=1 / 3+(2 / 3) e^{t}$; and (b) $M(t)=\left(0.25+0.75 e^{t}\right)$.

Example 2.3-8 If the moment generating function of X is

$$
M(t)=\frac{2}{5} e^{t}+\frac{1}{5} e^{2 t}+\frac{2}{5} e^{3 t}
$$

Find the pmf, mean, and variance.

Example 2.3-9 Suppose the mgf of X is

$$
M(t)=\frac{e^{t} / 2}{1-e^{t} / 2}, \quad t<\ln (2) .
$$

Find the pmf, mean, and variance.
Hint: Use $(1-z)^{-1}=1+z+z^{2}+z^{3}+\cdots, \quad-1<z<1$.

Exercises from textbook: Section 2.3: 1, 2, 3, 4, 5, 8, 9, 11, 13, 19

